Optically Isolated HV-IGBT Based 5-MW Cascade Inverter Building Block for High Power Applications

Paul Grems Duncan Airak, Inc.

U.S. DOE Small Business Innovative Research (SBIR), Phase II Grant
DOE 2002 Project

Project Goals

Develop and test an advanced prototype three phase, 5 megawatt inverter system based upon HV-IGBTs switches with complete optical isolation (control and sensing) between the high power subassemblies and the low power control and signal processing hardware.

Team Members

Pre-production Engineering Support

Funded Research

Optimized Sensor Elements

Products

Airak š

High-Power Inverter Applications

Optical Transducers for High-Power Applications

System Specifications

Technical Oversight

Motivation

- There exist no cost-effective, efficient power conversion topologies for high-power markets.
- High-power conversion systems are largely based upon smaller conversion systems with applied scaling rules, e.g., a 5-MW system ~ size of 10, 500 KW systems.
- Solution: Optical Sensor Technologies + High-Voltage IGBT Power Systems + Advanced Heat-Pipe Cooling Solutions

System Advantages

- > HV-IGBT Topology Allows:
 - Elimination of Current Snubbers and Voltage Clamps
 - Simplified Gate Drive Circuitry and Isolation
 - Access to Control Schemes that Permit Increased Efficiency and Reliability
- Optical Transducers and Interfaces Allow:
 - Intrinsic Isolation
 - EMI Immunity => Increased Reliability
 - Increased Equipment and Personnel Safety

System Advantages (Cont'd)

- Integrated Heat-Pipe Cooling System Allows:
 - Life-Cycle Cost Reduction over
 Conventional Pumping Systems
 - Lower Maintenance Requirements
 - Higher Reliability

Dual-Use Applications

- Emergency Power Markets
 - Short Term Ride Through Appl.
 - Longer Term UPS Applications
- Distributed Energy Markets
- Advanced Power Conversion Technologies
 - Fuel Cell Manufacturers
 - Flywheel Manufacturers
 - Wind & Hydro Turbine Mfrs.
 - Solar Manufacturers

- Military Markets
 - Fuel Cell Applications
 - ✓ Submarines
 - Afloat Forces
 - √ Forward Deployed Forces
 - "All Electric" Ship
 - Zonal Power Distribution
 - Prime Mover Power Conversion

Single Phase Building Block Sensor & Control Configuration

Therma-Charge[™] Multi-Kilowatt Heat Pipe Heat Sink

Power Rating: 10,000 watts

Nom. Air Flow: 600 CFM

Working Fluid: Water

Operating Range: 40° C - 180° C

3-Phase System Configuration Primary Test Configuration

Cascade Inverter Configuration

Transformerless Direct Connection

3-Unit Controller

5-MW 3-Phase Inverter

Concept Packaging

ThermaCharge 10kW Cooling Assys + Fan Packs (6)

Program Status as of 11/19/02

- Successfully Demonstrated 1400 kVA Single Phase Leg in March 2002 (details available @ www.airak.com)
- Currently In Month 5 of 24 Month Program
- Virginia Tech Subcontract to Deliver 300 kW Test Rectifier Started in Aug '02
- All Major Subsystems Have been Identified and Quoted
- 1400 kVA Single Phase System has been Transferred to Airak for Closed-Loop Control System Development & Testing

Program Status (Cont'd)

- The Integrated System Controller is Being Developed
- Optical Current Sensors are Undergoing Extensive Temperature Testing to Ensure Long-Term Performance
- Optical Temperature Sensors are Ready for Integration & Testing
- The Packaging for the Optical Voltage Sensors is being Developed for Integration into the Busbar.

Pending Major Milestones

- ThermaCharge Integration & Testing into Phase I 1400 kVA Phase Leg (Feb '03)
- Phase II Single Phase Leg Close-Loop Testing (Jul '03)
- > 3-Phase Low-Level (<300 kW) Testing (Jan '04)
- > 3-Phase Inverter Delivery to AEP (NLT Apr '04)

Acknowledgements

- Airak, Inc. wishes to thank the following individuals and organizations for their support on this program:
 - Dr. Imre Gyuk, U.S. Dept. of Energy
 - Mr. John Boyes, Sandia National Laboratories
 - Mr. Stan Atcitty, Sandia National Laboratories
 - Mr. David Nichols, American Electric Power
 - Dr. Ali Nourai, American Electric Power
 - Dr. Osman Demirci, American Electric Power

